Defensive Programming

In order to avoid some of the pain of debugging, it helps to adopt some defensive programming habits. Instead of writing a 20-line program and then testing it, build the program bottom-up out of small pieces that are known to work. Each time you combine these pieces to make a larger unit, test it carefully to see that it works as expected. Consider adding assert statements to your code, specifying properties of a variable, e.g., assert(isinstance(text, list)). If the value of the text variable later becomes a string when your code is used in some larger context, this will raise an AssertionError and you will get immediate notification of the problem.

Once you think you've found the bug, view your solution as a hypothesis. Try to predict the effect of your bugfix before re-running the program. If the bug isn't fixed, don't fall into the trap of blindly changing the code in the hope that it will magically start working again. Instead, for each change, try to articulate a hypothesis about what is wrong and why the change will fix the problem. Then undo the change if the problem was not resolved.

As you develop your program, extend its functionality, and fix any bugs, it helps to maintain a suite of test cases. This is called regression testing, since it is meant to detect situations where the code "regresses"—where a change to the code has an unintended side effect of breaking something that used to work. Python provides a simple regression-testing framework in the form of the doctest module. This module searches a file of code or documentation for blocks of text that look like an interactive Python session, of the form you have already seen many times in this book. It executes the Python commands it finds, and tests that their output matches the output supplied in the original file. Whenever there is a mismatch, it reports the expected and actual values. For details, please consult the doctest documentation at Apart from its value for regression testing, the doctest module is useful for ensuring that your software documentation stays in sync with your code.

Perhaps the most important defensive programming strategy is to set out your code clearly, choose meaningful variable and function names, and simplify the code wherever possible by decomposing it into functions and modules with well-documented interfaces.

Was this article helpful?

0 0


  • laura
    What is defensive programming in Python?
    4 years ago

Post a comment