## Tip A quicker way to create a transformation about all three axes is to use the xyzrotation function which takes three angles

Figure 9-5. 3D transformations in action

Listing 9-3. Matrix transformation in action (rotation3d.py)

import pygame from pygame.locals import *

from gameobjects.vector3 import Vector3

from gameobjects.matrix44 import Matrix44 as Matrix from math import *

from random import randint def calculate_viewing_distance(fov, screen_width):

d = (screen_width/2.0) / tan(fov/2.0) return d def run():

pygame.init()

screen = pygame.display.set_mode(SCREEN_SIZE, 0)

# 'courier new' is a fixed width font font = pygame.font.SysFont("courier new", 16, True) ball = pygame.image.load("ball.png").convert_alpha()

fov = 75. # Field of view viewing_distance = calculate_viewing_distance(radians(fov), SCREEN_SIZE[0])

# Create a list of points along the edge of a cube for x in xrange(0, CUBE_SIZE+1, 10):

for y in xrange(0, CUBE_SIZE+1, 10): edge_y = y == 0 or y == CUBE_SIZE

for z in xrange(0, CUBE_SIZE+1, 10): edge_z = z == 0 or z == CUBE_SIZE

point_x = float(x) - CUBE_SIZE/2 point_y = float(y) - CUBE_SIZE/2 point_z = float(z) - CUBE_SIZE/2

points.append(Vector3(point_x, point_y, point_z))

def point_z(point): return point[2]

center_x, center_y = SCREEN_SIZE center_x /= 2 center_y /= 2

ball_w, ball_h = ball.get_size() ball_center_x = ball_w / 2 ball_center_y = ball_h / 2

rotation = Vector3()

# Some colors for drawing red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) white = (255, 255, 255)

# Labels for the axes x_surface = font.render("X", y_surface = font.render("Y", z_surface = font.render("Z", while True:

for event in pygame.event.get(): if event.type == QUIT: return screen.fill((0, 0, 0))

time_passed = clock.tick() time_passed_seconds = time_passed / 1000.

True, white) True, white) True, white)

rotation_direction = Vector3()

#Adjust the rotation direction depending on key presses pressed_keys = pygame.key.get_pressed()

if pressed_keys[K_q]:

rotation_direction.x = +1.0 elif pressed_keys[K_a]:

rotation_direction.x = -1.0

if pressed_keys[K_w]:

rotation_direction.y = +1.0 elif pressed_keys[K_s]:

rotation_direction.y = -1.0

if pressed_keys[K_e]:

rotation_direction.z = +1.0 elif pressed_keys[K_d]:

rotation_direction.z = -1.0

# Apply time based movement to rotation rotation += rotation_direction * rotation_speed * time_passed_seconds

# Build the rotation matrix rotation_matrix = Matrix.x_rotation(rotation.x) rotation_matrix *= Matrix.y_rotation(rotation.y) rotation_matrix *= Matrix.z_rotation(rotation.z)

transformed_points = []

# Transform all the points and adjust for camera position for point in points:

p = rotation_matrix.transform_vec3(point) - camera_position transformed_points.append(p)

transformed_points.sort(key=point_z)

# Perspective project and blit all the points for x, y, z in transformed_points:

x = center_x + x * -viewing_distance / z y = center_y + -y * -viewing_distance / z screen.blit(ball, (x-ball_center_x, y-ball_center_y))

# Function to draw a single axis, see below def draw_axis(color, axis, label):

axis = rotation_matrix.transform_vec3(axis * 150.)

x, y, z = axis - camera_position x = center_x + x * -viewing_distance / z y = center_y + -y * -viewing_distance / z pygame.draw.line(screen, color, (center_x, center_y), (x, y), 2)

w, h = label.get_size() screen.blit(label, (x-w/2, y-h/2))

# Draw the x, y and z axes x_axis = Vector3(1, 0, 0) y_axis = Vector3(0, 1, 0) z_axis = Vector3(0, 0, 1)

draw_axis(red, x_axis, x_surface) draw_axis(green, y_axis, y_surface) draw_axis(blue, z_axis, z_surface)

# Display rotation information on screen degrees_txt = tuple(degrees(r) for r in rotation)

rotation_txt = "Rotation: Q/A %.3f, W/S %.3f, E/D %.3f" % degrees_txt txt_surface = font.render(rotation_txt, True, white) screen.blit(txt_surface, (5, 5))

# Display the rotation matrix on screen matrix_txt = str(rotation_matrix) txt_y = 25

txt_surface = font.render(line, True, white) screen.blit(txt_surface, (5, txt_y)) txt_y += 20

pygame.display.update()

The matrices in Listing 9-3 transform the points of a cube to their final positions on screen. Games will do many such transforms in the process of rendering a 3D world, and tend to have more sophisticated graphics than can be produced with 2D sprites. In the following section, you will learn how to join up the points in a model and use lighting to create solid-looking 3D models.